Day 10: Hoof It
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Haskell
A nice easy one today: didn’t even have to hit this with the optimization hammer.
import Data.Char import Data.List import Data.Map (Map) import Data.Map qualified as Map readInput :: String -> Map (Int, Int) Int readInput s = Map.fromList [ ((i, j), digitToInt c) | (i, l) <- zip [0 ..] (lines s), (j, c) <- zip [0 ..] l ] findTrails :: Map (Int, Int) Int -> [[[(Int, Int)]]] findTrails input = Map.elems . Map.map (filter ((== 10) . length)) $ Map.restrictKeys accessible starts where starts = Map.keysSet . Map.filter (== 0) $ input accessible = Map.mapWithKey getAccessible input getAccessible (i, j) h | h == 9 = [[(i, j)]] | otherwise = [ (i, j) : path | (di, dj) <- [(-1, 0), (0, 1), (1, 0), (0, -1)], let p = (i + di, j + dj), input Map.!? p == Just (succ h), path <- accessible Map.! p ] main = do trails <- findTrails . readInput <$> readFile "input10" mapM_ (print . sum . (`map` trails)) [length . nub . map last, length]
C
Tried a dynamic programming kind of thing first but recursion suited the problem much better.
Part 2 seemed incompatible with my visited list representation. Then at the office I suddenly realised I just had to skip a single if(). Funny how that works when you let things brew in the back of your mind.
Code
#include "common.h" #define GZ 43 /* * To avoid having to clear the 'seen' array after every search we mark * and check it with a per-search marker value ('id'). */ static char g[GZ][GZ]; static int seen[GZ][GZ]; static int score(int id, int x, int y, int p2) { if (x<0 || x>=GZ || y<0 || y>=GZ || (!p2 && seen[y][x] == id)) return 0; seen[y][x] = id; if (g[y][x] == '9') return 1; return (g[y-1][x] == g[y][x]+1 ? score(id, x, y-1, p2) : 0) + (g[y+1][x] == g[y][x]+1 ? score(id, x, y+1, p2) : 0) + (g[y][x-1] == g[y][x]+1 ? score(id, x-1, y, p2) : 0) + (g[y][x+1] == g[y][x]+1 ? score(id, x+1, y, p2) : 0); } int main(int argc, char **argv) { int p1=0,p2=0, id=1, x,y; if (argc > 1) DISCARD(freopen(argv[1], "r", stdin)); for (y=0; y<GZ && fgets(g[y], GZ, stdin); y++) ; for (y=0; y<GZ; y++) for (x=0; x<GZ; x++) if (g[y][x] == '0') { p1 += score(id++, x, y, 0); p2 += score(id++, x, y, 1); } printf("10: %d %d\n", p1, p2); return 0; }
That’s a lovely minimalist solution. I couldn’t even see where the solution was on my first read-through.
I bet that search would look cool visualized.
Here it is! https://sjmulder.nl/2024/aoc-day10.mp4
Oooh! Pretty!
Rust
Definitely a nice and easy one, I accidentally solved part 2 first, because I skimmed the challenge and missed the unique part.
#[cfg(test)] mod tests { const DIR_ORDER: [(i8, i8); 4] = [(-1, 0), (0, 1), (1, 0), (0, -1)]; fn walk_trail(board: &Vec<Vec<i8>>, level: i8, i: i8, j: i8) -> Vec<(i8, i8)> { let mut paths = vec![]; if i < 0 || j < 0 { return paths; } let actual_level = match board.get(i as usize) { None => return paths, Some(line) => match line.get(j as usize) { None => return paths, Some(c) => c, }, }; if *actual_level != level { return paths; } if *actual_level == 9 { return vec![(i, j)]; } for dir in DIR_ORDER.iter() { paths.extend(walk_trail(board, level + 1, i + dir.0, j + dir.1)); } paths } fn count_unique(p0: &Vec<(i8, i8)>) -> u32 { let mut dedup = vec![]; for p in p0.iter() { if !dedup.contains(p) { dedup.push(*p); } } dedup.len() as u32 } #[test] fn day10_part1_test() { let input = std::fs::read_to_string("src/input/day_10.txt").unwrap(); let board = input .trim() .split('\n') .map(|line| { line.chars() .map(|c| { if c == '.' { -1 } else { c.to_digit(10).unwrap() as i8 } }) .collect::<Vec<i8>>() }) .collect::<Vec<Vec<i8>>>(); let mut total = 0; for (i, row) in board.iter().enumerate() { for (j, pos) in row.iter().enumerate() { if *pos == 0 { let all_trails = walk_trail(&board, 0, i as i8, j as i8); total += count_unique(&all_trails); } } } println!("{}", total); } #[test] fn day10_part2_test() { let input = std::fs::read_to_string("src/input/day_10.txt").unwrap(); let board = input .trim() .split('\n') .map(|line| { line.chars() .map(|c| { if c == '.' { -1 } else { c.to_digit(10).unwrap() as i8 } }) .collect::<Vec<i8>>() }) .collect::<Vec<Vec<i8>>>(); let mut total = 0; for (i, row) in board.iter().enumerate() { for (j, pos) in row.iter().enumerate() { if *pos == 0 { total += walk_trail(&board, 0, i as i8, j as i8).len(); } } } println!("{}", total); } }
Uiua
Uiua has a very helpful
path
function built in which returns all valid paths that match your criteria (using diijkstra/a* depending on whether third function is provided), making a lot of path-finding stuff almost painfully simple, as you just need to provide a starting node and three functions: return next nodes, return confirmation if we’ve reached a suitable target node (here testing if it’s = 9), (optional) return heuristic cost to destination (here set to constant 1), .Data ← ⊜≡⋕⊸≠@\n"89010123\n78121874\n87430965\n96549874\n45678903\n32019012\n01329801\n10456732" N₄ ← ≡+[0_1 1_0 0_¯1 ¯1_0]¤ Ns ← ▽:⟜(=1-:∩(⬚0⊡:Data))▽⊸≡(/×≥0)N₄. # Valid, in-bounds neighbours. Count! ← /+≡(⧻^0⊙◌ path(Ns|(=9⊡:Data)|1))⊚=0Data &p Count!(◴≡◇⊣) &p Count!∘
Python
Not surprisingly, trees
import numpy as np from pathlib import Path cwd = Path(__file__).parent cross = np.array([[-1,0],[1,0],[0,-1],[0,1]]) class Node(): def __init__(self, coord, parent): self.coord = coord self.parent = parent def __repr__(self): return f"{self.coord}" def parse_input(file_path): with file_path.open("r") as fp: data = list(map(list, fp.read().splitlines())) return np.array(data, dtype=int) def find_neighbours(node_pos, grid): I = list(filter(lambda x: all([c>=0 and o-c>0 for c,o in zip(x,grid.shape)]), list(cross + node_pos))) candidates = grid[tuple(np.array(I).T)] J = np.argwhere(candidates-grid[tuple(node_pos)]==1).flatten() return list(np.array(I).T[:, J].T) def construct_tree_paths(grid): roots = list(np.argwhere(grid==0)) trees = [] for root in roots: levels = [[Node(root, None)]] while len(levels[-1])>0 or len(levels)==1: levels.append([Node(node, root) for root in levels[-1] for node in find_neighbours(root.coord, grid)]) trees.append(levels) return trees def trace_back(trees, grid): paths = [] for levels in trees: for node in levels[-2]: path = "" while node is not None: coord = ",".join(node.coord.astype(str)) path += f"{coord} " node = node.parent paths.append(path) return paths def solve_problem(file_name): grid = parse_input(Path(cwd, file_name)) trees = construct_tree_paths(grid) trails = trace_back(trees, grid) ntrails = len(set(trails)) nreached = sum([len(set([tuple(x.coord) for x in levels[-2]])) for levels in trees]) return nreached, ntrails
yay trees! my solution was really fast too! 😀
edit: you can find it here, or look at my lemmy post
should take only 1.5 milliseconds!
Nim
As many others today, I’ve solved part 2 first and then fixed a ‘bug’ to solve part 1. =)
type Vec2 = tuple[x,y:int] const Adjacent = [(x:1,y:0),(-1,0),(0,1),(0,-1)] proc path(start: Vec2, grid: seq[string]): tuple[ends, trails: int] = var queue = @[@[start]] var endNodes: HashSet[Vec2] while queue.len > 0: let path = queue.pop() let head = path[^1] let c = grid[head.y][head.x] if c == '9': inc result.trails endNodes.incl head continue for d in Adjacent: let nd = (x:head.x + d.x, y:head.y + d.y) if nd.x < 0 or nd.y < 0 or nd.x > grid[0].high or nd.y > grid.high: continue if grid[nd.y][nd.x].ord - c.ord != 1: continue queue.add path & nd result.ends = endNodes.len proc solve(input: string): AOCSolution[int, int] = let grid = input.splitLines() var trailstarts: seq[Vec2] for y, line in grid: for x, c in line: if c == '0': trailstarts.add (x,y) for start in trailstarts: let (ends, trails) = start.path(grid) result.part1 += ends result.part2 += trails
Julia
Quite happy that today went a lot smoother than yesterday even though I am not really familiar with recursion. Normally I never use recursion but I felt like today could be solved by it (or using trees, but I’m even less familiar with them). Surprisingly my solution actually worked and for part 2 only small modifications were needed to count peaks reached by each trail.
Code
function readInput(inputFile::String) f = open(inputFile,"r") lines::Vector{String} = readlines(f) close(f) topoMap = Matrix{Int}(undef,length(lines),length(lines[1])) for (i,l) in enumerate(lines) topoMap[i,:] = map(x->parse(Int,x),collect(l)) end return topoMap end function getTrailheads(topoMap::Matrix{Int}) trailheads::Vector{Vector{Int}} = [] for (i,r) in enumerate(eachrow(topoMap)) for (j,c) in enumerate(r) c==0 ? push!(trailheads,[i,j]) : nothing end end return trailheads end function getReachablePeaks(topoMap::Matrix{Int},trailheads::Vector{Vector{Int}}) reachablePeaks = Dict{Int,Vector{Vector{Int}}}() function getPossibleMoves(topoMap::Matrix{Int},pos::Vector{Int}) possibleMoves::Vector{Vector{Int}} = [] pos[1]-1 in 1:size(topoMap)[1] && topoMap[pos[1]-1,pos[2]]==topoMap[pos[1],pos[2]]+1 ? push!(possibleMoves,[pos[1]-1,pos[2]]) : nothing #up? pos[1]+1 in 1:size(topoMap)[1] && topoMap[pos[1]+1,pos[2]]==topoMap[pos[1],pos[2]]+1 ? push!(possibleMoves,[pos[1]+1,pos[2]]) : nothing #down? pos[2]-1 in 1:size(topoMap)[2] && topoMap[pos[1],pos[2]-1]==topoMap[pos[1],pos[2]]+1 ? push!(possibleMoves,[pos[1],pos[2]-1]) : nothing #left? pos[2]+1 in 1:size(topoMap)[2] && topoMap[pos[1],pos[2]+1]==topoMap[pos[1],pos[2]]+1 ? push!(possibleMoves,[pos[1],pos[2]+1]) : nothing #right? return possibleMoves end function walkPossMoves(topoMap::Matrix{Int},pos::Vector{Int},reachedPeaks::Matrix{Bool},trailId::Int) possMoves::Vector{Vector{Int}} = getPossibleMoves(topoMap,pos) for m in possMoves if topoMap[m[1],m[2]]==9 reachedPeaks[m[1],m[2]]=1 trailId += 1 continue end reachedPeaks,trailId = walkPossMoves(topoMap,m,reachedPeaks,trailId) end return reachedPeaks, trailId end peaksScore::Int = 0; trailsScore::Int = 0 trailId::Int = 0 for (i,t) in enumerate(trailheads) if !haskey(reachablePeaks,i); reachablePeaks[i]=[]; end reachedPeaks::Matrix{Bool} = zeros(size(topoMap)) trailId = 0 reachedPeaks,trailId = walkPossMoves(topoMap,t,reachedPeaks,trailId) trailPeaksScore = sum(reachedPeaks) peaksScore += trailPeaksScore trailsScore += trailId end return peaksScore,trailsScore end #getReachablePeaks topoMap::Matrix{Int} = readInput("input/day10Input") trailheads::Vector{Vector{Int}} = getTrailheads(topoMap) @info "Part 1" reachablePeaks = getReachablePeaks(topoMap,trailheads)[1] println("reachable peaks: ",reachablePeaks) @info "Part 2" trailsScore::Int = getReachablePeaks(topoMap,trailheads)[2] println("trails score: $trailsScore")
J
Who needs recursion or search algorithms? Over here in line noise array hell, we have built-in sparse matrices! :)
data_file_name =: '10.data' grid =: "."0 ,. > cutopen fread data_file_name data =: , grid 'rsize csize' =: $ grid inbounds =: monad : '(*/ y >: 0 0) * (*/ y < rsize, csize)' coords =: ($ grid) & #: uncoords =: ($ grid) & #. NB. if n is the linear index of a point, neighbors n lists the linear indices NB. of its orthogonally adjacent points neighbors =: monad : 'uncoords (#~ inbounds"1) (coords y) +"1 (4 2 $ 1 0 0 1 _1 0 0 _1)' uphill1 =: dyad : '1 = (y { data) - (x { data)' uphill_neighbors =: monad : 'y ,. (#~ (y & uphill1)) neighbors y' adjacency_of =: monad define edges =. ; (< @: uphill_neighbors"0) i.#y NB. must explicitly specify fill of integer 0, default is float 1 edges} 1 $. ((#y), #y); (0 1); 0 ) adjacency =: adjacency_of data NB. maximum path length is 9 so take 9th power of adjacency matrix leads_to_matrix =: adjacency (+/ . *)^:8 adjacency leads_to =: dyad : '({ & leads_to_matrix) @: < x, y' trailheads =: I. data = 0 summits =: I. data = 9 scores =: trailheads leads_to"0/ summits result1 =: +/, 0 < scores result2 =: +/, scores
For some reason the code appears to be HTML escaped (I’m using the web interface on https://lemmy.sdf.org/)
Yes. I don’t know whether this is a beehaw specific issue (that being my home instance) or a lemmy issue in general, but < and & are HTML escaped in all code blocks I see. Of course, this is substantially more painful for J code than many other languages.
C#
using System.Diagnostics; using Common; namespace Day10; static class Program { static void Main() { var start = Stopwatch.GetTimestamp(); var sampleInput = Input.ParseInput("sample.txt"); var programInput = Input.ParseInput("input.txt"); Console.WriteLine($"Part 1 sample: {Part1(sampleInput)}"); Console.WriteLine($"Part 1 input: {Part1(programInput)}"); Console.WriteLine($"Part 2 sample: {Part2(sampleInput)}"); Console.WriteLine($"Part 2 input: {Part2(programInput)}"); Console.WriteLine($"That took about {Stopwatch.GetElapsedTime(start)}"); } static object Part1(Input i) => GetTrailheads(i) .Sum(th => CountTheNines(th, i, new HashSet<Point>(), false)); static object Part2(Input i) => GetTrailheads(i) .Sum(th => CountTheNines(th, i, new HashSet<Point>(), true)); static int CountTheNines(Point loc, Input i, ISet<Point> visited, bool allPaths) { if (!visited.Add(loc)) return 0; var result = (ElevationAt(loc, i) == 9) ? 1 : loc.GetCardinalMoves() .Where(move => move.IsInBounds(i.Bounds.Row, i.Bounds.Col)) .Where(move => (ElevationAt(move, i) - ElevationAt(loc, i)) == 1) .Where(move => !visited.Contains(move)) .Sum(move => CountTheNines(move, i, visited, allPaths)); if(allPaths) visited.Remove(loc); return result; } static IEnumerable<Point> GetTrailheads(Input i) => Grid.EnumerateAllPoints(i.Bounds) .Where(loc => ElevationAt(loc, i) == 0); static int ElevationAt(Point p, Input i) => i.Map[p.Row][p.Col]; } public class Input { public required Point Bounds { get; init; } public required int[][] Map { get; init; } public static Input ParseInput(string file) { using var reader = new StreamReader(file); var map = reader.EnumerateLines() .Select(l => l.Select(c => (int)(c - '0')).ToArray()) .ToArray(); var bounds = new Point(map.Length, map.Max(l => l.Length)); return new Input() { Map = map, Bounds = bounds, }; } }
Straightforward depth first search. I found that the only difference for part 2 was to remove the current location from the HashSet of visited locations when the recurive call finished so that it could be visited again in other unique paths.
Nice to have a really simple one for a change, both my day 1 and 2 solutions worked on their very first attempts.
I rewrote the code to combine the two though, since the implementations were almost identical for both solutions, and also to replace the recursion with a search list instead.C#
int[] heights = new int[0]; (int, int) size = (0, 0); public void Input(IEnumerable<string> lines) { size = (lines.First().Length, lines.Count()); heights = string.Concat(lines).Select(c => int.Parse(c.ToString())).ToArray(); } int trails = 0, trailheads = 0; public void PreCalc() { for (int y = 0; y < size.Item2; ++y) for (int x = 0; x < size.Item1; ++x) if (heights[y * size.Item1 + x] == 0) { var unique = new HashSet<(int, int)>(); trails += CountTrails((x, y), unique); trailheads += unique.Count; } } public void Part1() { Console.WriteLine($"Trailheads: {trailheads}"); } public void Part2() { Console.WriteLine($"Trails: {trails}"); } int CountTrails((int, int) from, HashSet<(int,int)> unique) { int found = 0; List<(int,int)> toSearch = new List<(int, int)>(); toSearch.Add(from); while (toSearch.Any()) { var cur = toSearch.First(); toSearch.RemoveAt(0); int height = heights[cur.Item2 * size.Item1 + cur.Item1]; for (int y = -1; y <= 1; ++y) for (int x = -1; x <= 1; ++x) { if ((y != 0 && x != 0) || (y == 0 && x == 0)) continue; var newAt = (cur.Item1 + x, cur.Item2 + y); if (newAt.Item1 < 0 || newAt.Item1 >= size.Item1 || newAt.Item2 < 0 || newAt.Item2 >= size.Item2) continue; int newHeight = heights[newAt.Item2 * size.Item1 + newAt.Item1]; if (newHeight - height != 1) continue; if (newHeight == 9) { unique.Add(newAt); found++; continue; } toSearch.Add(newAt); } } return found; }
Rust
This was a nice one. Basically 9 rounds of Breadth-First-Search, which could be neatly expressed using
fold
. The only difference between part 1 and part 2 turned out to be the datastructure for the search frontier: TheHashSet
in part 1 unifies paths as they join back to the same node, theVec
in part 2 keeps all paths separate.Solution
use std::collections::HashSet; fn parse(input: &str) -> Vec<&[u8]> { input.lines().map(|l| l.as_bytes()).collect() } fn adj(grid: &[&[u8]], (x, y): (usize, usize)) -> Vec<(usize, usize)> { let n = grid[y][x]; let mut adj = Vec::with_capacity(4); if x > 0 && grid[y][x - 1] == n + 1 { adj.push((x - 1, y)) } if y > 0 && grid[y - 1][x] == n + 1 { adj.push((x, y - 1)) } if x + 1 < grid[0].len() && grid[y][x + 1] == n + 1 { adj.push((x + 1, y)) } if y + 1 < grid.len() && grid[y + 1][x] == n + 1 { adj.push((x, y + 1)) } adj } fn solve(input: String, trailhead: fn(&[&[u8]], (usize, usize)) -> u32) -> u32 { let grid = parse(&input); let mut sum = 0; for (y, row) in grid.iter().enumerate() { for (x, p) in row.iter().enumerate() { if *p == b'0' { sum += trailhead(&grid, (x, y)); } } } sum } fn part1(input: String) { fn score(grid: &[&[u8]], start: (usize, usize)) -> u32 { (1..=9) .fold(HashSet::from([start]), |frontier, _| { frontier.iter().flat_map(|p| adj(grid, *p)).collect() }) .len() as u32 } println!("{}", solve(input, score)) } fn part2(input: String) { fn rating(grid: &[&[u8]], start: (usize, usize)) -> u32 { (1..=9) .fold(vec![start], |frontier, _| { frontier.iter().flat_map(|p| adj(grid, *p)).collect() }) .len() as u32 } println!("{}", solve(input, rating)) } util::aoc_main!();
Also on github
Haskell
import Control.Arrow import Control.Monad.Reader import Data.Array.Unboxed import Data.List type Pos = (Int, Int) type Board = UArray Pos Char type Prob = Reader Board parse :: String -> Board parse s = listArray ((1, 1), (n, m)) $ concat l where l = lines s n = length l m = length $ head l origins :: Prob [Pos] origins = ask >>= \board -> return $ fmap fst . filter ((== '0') . snd) $ assocs board moves :: Pos -> Prob [Pos] moves pos = ask >>= \board -> let curr = board ! pos in return . filter ((== succ curr) . (board !)) . filter (inRange (bounds board)) $ fmap (.+. pos) deltas where deltas = [(1, 0), (0, 1), (-1, 0), (0, -1)] (ax, ay) .+. (bx, by) = (ax + bx, ay + by) solve :: [Pos] -> Prob [Pos] solve p = do board <- ask nxt <- concat <$> mapM moves p let (nines, rest) = partition ((== '9') . (board !)) nxt fmap (++ nines) $ if null rest then return [] else solve rest scoreTrail = fmap (length . nub) . solve . pure scoreTrail' = fmap length . solve . pure part1 = sum . runReader (origins >>= mapM scoreTrail) part2 = sum . runReader (origins >>= mapM scoreTrail') main = getContents >>= print . (part1 &&& part2) . parse
Haskell
Cool task, nothing to optimize
import Control.Arrow import Data.Array.Unboxed (UArray) import Data.Set (Set) import qualified Data.Char as Char import qualified Data.List as List import qualified Data.Set as Set import qualified Data.Array.Unboxed as UArray parse :: String -> UArray (Int, Int) Int parse s = UArray.listArray ((1, 1), (n, m)) . map Char.digitToInt . filter (/= '\n') $ s where n = takeWhile (/= '\n') >>> length $ s m = filter (== '\n') >>> length >>> pred $ s reachableNeighbors :: (Int, Int) -> UArray (Int, Int) Int -> [(Int, Int)] reachableNeighbors p@(py, px) a = List.filter (UArray.inRange (UArray.bounds a)) >>> List.filter ((a UArray.!) >>> pred >>> (== (a UArray.! p))) $ [(py-1, px), (py+1, px), (py, px-1), (py, px+1)] distinctTrails :: (Int, Int) -> UArray (Int, Int) Int -> Int distinctTrails p a | a UArray.! p == 9 = 1 | otherwise = flip reachableNeighbors a >>> List.map (flip distinctTrails a) >>> sum $ p reachableNines :: (Int, Int) -> UArray (Int, Int) Int -> Set (Int, Int) reachableNines p a | a UArray.! p == 9 = Set.singleton p | otherwise = flip reachableNeighbors a >>> List.map (flip reachableNines a) >>> Set.unions $ p findZeros = UArray.assocs >>> filter (snd >>> (== 0)) >>> map fst part1 a = findZeros >>> map (flip reachableNines a) >>> map Set.size >>> sum $ a part2 a = findZeros >>> map (flip distinctTrails a) >>> sum $ a main = getContents >>= print . (part1 &&& part2) . parse
Uiua
After finally deciding to put aside Day 9 Part 2 for now, this was really easy actually. The longest was figuring out how many extra dimensions I had to give some arrays and where to remove those again (and how). Then part 2 came along and all I had to do was remove a single character (not removing duplicates when landing on the same field by going different ways from the same starting point). Basically, everything in the parentheses of the
Trails!
macro was my solution for part 1, just that the^0
was◴
(deduplicate). Once that was removed, the solution for part 2 was there as well.Run with example input here
Note: in order to use the code here for the actual input, you have to replace
=₈
with=₅₀
because I was too lazy to make it work with variable array sizes this time.$ 89010123 $ 78121874 $ 87430965 $ 96549874 $ 45678903 $ 32019012 $ 01329801 $ 10456732 . Adj ← ¤[0_¯1 0_1 ¯1_0 1_0] Trails! ← ( ⊚=0. ⊙¤ ≡(□¤) 1 ⍥(⊙(≡(□^0/⊂≡(+¤)⊙¤°□)⊙Adj ≡(□▽¬≡/++⊃=₋₁=₈.°□)) +1⟜⊸⍚(▽=⊙(:⟜⊡)) )9 ⊙◌◌ ⧻/◇⊂ ) PartOne ← ( # &rs ∞ &fo "input-10.txt" ⊜∵⋕≠@\n. Trails!◴ ) PartTwo ← ( # &rs ∞ &fo "input-10.txt" ⊜∵⋕≠@\n. Trails!∘ ) &p "Day 10:" &pf "Part 1: " &p PartOne &pf "Part 2: " &p PartTwo
C#
using QuickGraph; using QuickGraph.Algorithms.Search; using Point = (int, int); public class Day10 : Solver { private int[][] data; private int width, height; private List<int> destinations_counts = [], paths_counts = []; private record PointEdge(Point Source, Point Target): IEdge<Point>; private DelegateVertexAndEdgeListGraph<Point, PointEdge> MakeGraph() => new(AllPoints(), GetNeighbours); private static readonly List<Point> directions = [(1, 0), (-1, 0), (0, 1), (0, -1)]; private bool GetNeighbours(Point from, out IEnumerable<PointEdge> result) { List<PointEdge> neighbours = []; int next_value = data[from.Item2][from.Item1] + 1; foreach (var (dx, dy) in directions) { int x = from.Item1 + dx, y = from.Item2 + dy; if (x < 0 || y < 0 || x >= width || y >= height) continue; if (data[y][x] != next_value) continue; neighbours.Add(new(from, (x, y))); } result = neighbours; return true; } private IEnumerable<Point> AllPoints() => Enumerable.Range(0, width).SelectMany(x => Enumerable.Range(0, height).Select(y => (x, y))); public void Presolve(string input) { data = input.Trim().Split("\n").Select(s => s.Select(ch => ch - '0').ToArray()).ToArray(); width = data[0].Length; height = data.Length; var graph = MakeGraph(); for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { if (data[j][i] != 0) continue; var search = new BreadthFirstSearchAlgorithm<Point, PointEdge>(graph); Point start = (i, j); Dictionary<Point, int> paths_into = []; paths_into[start] = 1; var destinations = 0; var paths = 0; search.ExamineEdge += edge => { paths_into.TryAdd(edge.Target, 0); paths_into[edge.Target] += paths_into[edge.Source]; }; search.FinishVertex += vertex => { if (data[vertex.Item2][vertex.Item1] == 9) { paths += paths_into[vertex]; destinations += 1; } }; search.SetRootVertex(start); search.Compute(); destinations_counts.Add(destinations); paths_counts.Add(paths); } } } public string SolveFirst() => destinations_counts.Sum().ToString(); public string SolveSecond() => paths_counts.Sum().ToString(); }